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Abstract

Two-dimensional equations for electromagnetic fields in a multi-layered thin dielectric film are derived from the
three-dimensional equations of electrodynamics by expanding the vector potential of the electromagnetic fields into
trigonometric series expansions of the film thickness coordinate. The lower order equations are examined. It is shown
that they can describe certain long waves in the film. The equations are useful for modeling thin film devices.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

For mechanical waves in a film or plate it has been known for a long time that two-dimensional equa-
tions can be derived from the three-dimensional theory of elasticity by expanding the mechanical displace-
ment vector into power or trigonometric series expansions of the plate thickness coordinate (Mindlin,
1955). According to Mindlin (1955), this procedure can be traced back to Cauchy and Poisson. The result-
ing two-dimensional plate equations are approximate in nature. Since they are much simpler than the three-
dimensional equations, they often allow theoretical analyses of waves propagating in a plate (Mindlin,
1955), and waves in a plate on a substrate (Tiersten, 1969). The literature on elastic plates is numerous.
For electromagnetic waves in a single-layered dielectric film, two-dimensional equations were derived in
a similar manner in Lee and Yang (1993a) and Lee and Yu (1994), and were used in the analysis of plate
waveguides and resonators (Lee and Yang, 1993b; Lee et al., 1994, 1996). Two-dimensional equations for
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coupled electromagnetic and mechanical fields in a plate were also developed (Eringen, 1989; Altay and
Dokmeci, submitted for publication). The two-dimensional equations in Lee and Yang (1993a), Lee and
Yu (1994), Eringen (1989) and Altay and Dokmeci (submitted for publication) are all for single-layered
films. Multi-layered films are common structures for microwave devices (Marcuse, 1989). The recent devel-
opment of superlattice offers more possibilities of multi-layered devices (Christen et al., 2003). In this paper
we derive two-dimensional equations for electromagnetic fields in a multi-layered thin dielectric film. The
three-dimensional equations are summarized in Section 2. Two-dimensional equations are obtained in Sec-
tion 3, and are reduced to a few special cases in Section 4. To examine the accuracy of the two-dimensional
equations, in Section 5 we compare solutions for a few waves in a three-layered dielectric waveguide from
the two-dimensional equations with solutions for the same waves from the three-dimensional equations.
Finally, some conclusions are drawn in Section 6.

2. Three-dimensional equations

The three-dimensional equations of electrodynamics are (Panofsky, 1955)

ek = ~B,, gpHy ;= D;+J;, Bi;=0, Di=p, (1)
where E is the electric field, D is the electric displacement, B is the magnetic induction, H is the magnetic
field, J is the free current density, and p is the free charge density. The summation convention for repeated
tensor indices and the convention that a comma followed by an index denotes partial differentiation with
respect to the coordinate associated with the index are used. A superimposed dot represents differentiation
with respect to time 7. g, is the permutation tensor. The equations in (1) are accompanied by the following
constitutive equations describing behaviors of a specific material:

Di = Sij

Jj

B = Hinja (2)

where ¢; is the electric permittivity, and p; is the magnetic permeability. With the introduction of a vector
potential A and a scalar potential ¢ by (Panofsky, 1955)
Ei=—¢; — AIn By = e ;. (3)

Eq. (1), 3 are identically satisfied. (1), 4 can be written as equations in terms of the potentials. Consider a
finite dielectric body occupying a region V (see Fig. 1). The boundary surface of V' is denoted by S, with a
unit exterior normal n. For boundary conditions we consider the following partitions of S (see Fig. 1):

S(bUSD:SA USH:S,

g _ _ (4)
0 NSp=2S,NSy =0.

X1

n S

Fig. 1. A dielectric body and partitions of its boundary.
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On S we may prescribe

¢ = (7)7 on Sd)v

Dln[+3:0, on SD,

_ (5)
8i/knjAk = a,, on SA,
gy = Ei, on Sy,

where ¢,d,a; and h; are known boundary data. Consider the following variational functional (Nelson,

1979; Lee, 1991; Yang, 1991):

t a1 f
H(A,d)):/ dt/ [;(sijEiEj—,Lt;lB,-Bj)JrJ[A;—pd)}dV—/ dt/ 3¢dS—/ dt/ hiA;dS
n v ' ty Sp ) Su

(6)
with admissible functions satisfying
¢ = (Z)v on Sdn
A = a;,  on Sy, (7)
Ai(xat()) :A?a Ai(xa tl) :A117 in Va
where 4! and 4] are prescribed data at 7, and #;. Then
N . 131 _
81T = / dr / (Dss — )3 — (et — Dy — J)54, AV — / dr / (Din; + d)3dS
fo v to Sp
2 3
+/ dt/ (gl»jknij —h,)SA,dS (8)
fo Su

Therefore the stationary condition of (6) yields (1), 4 and (5), 4. In the problems we are interested in, J and
p are both zero. For waves in a source free region, a vector potential A alone is sufficient (Lee and Yang,
1993). In this case D;; = 0 is essentially implied by D; = & H ;.

3. Derivation of two-dimensional equations

Consider an N-layered plate of total thickness 2/ (see Fig. 2). x5 is the thickness coordinate. The x; and
x1 axes are in the middle surface. The two major surfaces and the N — 1 interfaces are sequentially deter-
mined by x, = —h = ho,hy,...,hy_1, and hy = h.

A X

Fig. 2. A multi-layered thin film.
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3.1. Potential expansions

We begin with the following expansion of the vector potential (Lee and Yang, 1993a; Lee and Yu, 1994):

Ay (x1,x2,x3, 1) ZA (x1,x3,¢ cos—(l—lp) a=1,3,

2
00 . +1
A2 Xl,X2,X3, ZAé x17x3; SII'I( 2 ) (1 _lp)v ¢ :07 (9)
where
X2
== 1
=" (10)

We want to derive two-dimensional equations for AE"). Substituting (9) into (3), we can write

( N (11)
= ) + )n
B.=> B"sin" -
> asn ™5y
N nm
B Yo" 1)
where
El(n) _ AE”)’
1
Bgn) _ (n ‘gh )ﬂAgnH) _A%’
(n) (n) (n) (12)
B, :Al,s_Allv
n n (}’l+ 1)7'[ n+1
B = af) LD g

3.2. Field equations

Let the two-dimensional region occupied by the middle plane of a finite film in the x3 — x; plane be 4
(see Fig. 3). The volume integrals in (8) can be written as

151 .
ty Vv

I3 hy
:/ dt/ dxldx3 / H32—H23—D1)6A1 (H13—H31—D2)6A2
to A

hi—y

—(Hy —Hip — D3)5A3] dx,. (13)
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X

X3

Fig. 3. A finite region in the middle surface of the film and its boundary.

Substitution of (9) into (13) yields
1

_EH( Y H(z',l;‘*‘hH(n) by,
Y}~ H{) = Dy, (14)
H”—i—zhH”] —%H b,
where the resultant of the H field and the surface terms are defined by
/ H,sin 2T H) (1= y)dy, / Hzcos— (1= ) dy,

:[lDacosj(l—w)dW, D(Z")z/lDzsinT)(l—x//)dzp, (15)

HY = Ho(h) — (—1)"Ha(~h).

a

Note that because of the use of the variational formulation and ¢ = 0, there are no two-dimensional equa-
tions corresponding to D;; = 0. This is an important simplification compared to the equations in Lee and
Yang (1993a) and Lee and Yu (1994) which were derived without using the variational formulation. Since a
multi-layered film is a body with piecewise constant material parameters which do not have derivatives
across an interface, the integrations in the variational formulation have to be performed layer by layer.
Interface continuity conditions on the potentials are guaranteed by (9). Continuity of tangential H and nor-
mal D are part of the stationary conditions of the variational procedure. These conditions can only be con-
sidered as being satisfied approximately by two-dimensional solutions.

3.3. Constitutive relations

For the Ith layer, we write the constitutive relations as
l)'—glevJ7 Hi:v;jB/" (16)
where v,’.j is the inverse of u{j Substituting (16) and (11) into (15), we obtain the following two-dimensional
constitutive relations (see Appendix A):

Zan
:ZNU’ B

Eq. (17) are relations among the two-dimensional fields. Their coefficients depend on the material constants
and geometry of the layers.

(17)
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3.4. Boundary conditions

In summary, we have obtained the field-potential relations (12), field equations (14), and constitutive
relations (17). With successive substitutions, (12) can be written as equations for potentials of various
orders. Let the boundary curve of the two-dimensional region 4 occupied by the middle surface of a finite film
be C which has a unit outward normal n,, @ = 1, 3. Then a unit tangent s, can be determined by (see Fig. 3)

S =€ Xn, NES Sijkéjana (18)
S1 = nz, Sy = 0, §3 = —ny,

where e, is the unit vector along x,. We also introduce an H; such that
71; = Sijknjﬁ/p (19)

Then the two-dimensional boundary conditions can be determined from the last term in (8). It can be con-
cluded (see Appendix B) that on the boundary curve of a two-dimensional domain we may prescribe

H, or A-s

(20)
and H-s or A4,.

The determination of the form of the boundary conditions is another advantage of using the variational
formulation.
4. Special cases

The two-dimensional equations obtained in the previous section are rather general. In this section we
reduce them to a few special cases.

4.1. An isotropic film

When every layer is isotropic, we have
62 = 8151'/'7 ij = Vléfj, (21)
which implies

(mn) (m,n) (mp) (mpn)
Mp™ =0, M, 0, Mpy" =My =0,

N
(mn) (mn)
Mll - M33 - Z

17
s’cos@(l — ) cos@(l — ) dy,
=1 YV 2 2 (22)
N 17
(m,n) __ I (m—l—l)rc o . (7’[-'—1)7[ o
My = ; /, la sin———— (1—-v) sin———— (1 —y)dy,
Nz(;;,w =0, Ng:’”) =0, N%w) = N(a'?’") =0,
N (m+ 1)z (n+ n
N(m,n) _ N(mn) _ / 7 . 1 — . 1— d
11 33 ; . V- sim 27( V) SN (1 —y)dy, (23)

mn N Vi mm nm
N(22’>:Z/ VICOST(I—IP)COST(I—lﬁ)dIﬁ.
I=1

[78
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Then the constitutive relations can be written as

DY = MR, DY = Y M

a

n _ (m,n) p(m (n) _ (m,n) py(m)
Hf,)—ZN“ BEJ . H, —Zsz By

4.2. A single-layered film

When the film is of one-layer only, the constitutive relations reduce to

HY = vB) + va) Z ;S

m

HY =2 " By + (1 4 8,0)BY,

m

DY = eu(1 4 6,0)Ey" + 60 D VminuEs” s

m

Dg”) = & Zy()1+l)/nEl(Jm) + gzzEgn)7

m

where §,,, is the Chronecker delta, and

! mm nn 0, m+ n even,
ymn:/ Sln?(l_w)COST(l—lﬂ)dd/: 4m

! (m? —n?)m’

Eq. (25) are the equations derived by Lee and Yu (1994).

m + n odd.

4.3. A single-layered isotropic film

If a film is isotropic and single layered, (25) further reduces to

Dg”) _ 6(1 + 5’,0)E{(ln)7 Dgn) — SEgn)’
W, D =1+

which are the equations derived by Lee and Yang (1993).

5. Applications to waveguides

(24)

(25)

Special cases of the two-dimensional equations obtained have been examined for waves in single-layered
isotropic and anisotropic films (Lee and Yang, 1993a; Lee and Yu, 1994). In these special cases the disper-
sion curves of waves described by the two-dimensional equations show good agreement with the dispersion
curves of the same waves when described by the three-dimensional equations. To examine the more general
case of multi-layered films we consider waves propagating in a three-layered isotropic waveguide (see
Fig. 4). In applications symmetric waveguides are used most often. In isotropic waveguides waves can
be separated into transverse electric (TE) and transverse magnetic (TM) waves. They will be analyzed sep-
arately, both from the three- and two-dimensional equations for comparison. We study straight-crested

waves independent of x;.
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A x
Xo = b
€2, Ho
Xo=a
€1,Ho | R
Xo=-a
€2, Ho
Xo = -b

Fig. 4. A three-layered, symmetric and isotropic film.

5.1. TE waves from the three-dimensional equations

TE waves can be described by

A1 :AQZO, A3 :A3()C1,t). (28)
From (1)—(3) the governing equations are
I . 1
Asn+ 43 = ;Aa, 2=t (29)

where g is the magnetic permeability of free space. The following A3 represents a wave solution to (29):
A3 = (Ccosnxy + Gsinnx,) expli(éxy — wt)],
nz:i)j_ézzéz(zz_l) vzzzj’ (30)
where C and G are undetermined constants. (30); generates the following field components:
E; =iw(C cosnx, + Gsinnx,) expli(&x; — wr)],
B, = n(—Csinnx; + Geosnxy) expli(&x; — wt)], (31)
B, = —i&(Ccosyx, + Gsinnxy) expli(éxy — wt)].

Egs. (28)—(31) apply to each layer of the waveguide in Fig. 4 when the corresponding material constants of
the layer are used. Therefore we write the TE wave solutions in each layer as

Ay = (C cosnyxy + Gy sinyxp) expli(éxy — wt)],  |x| < a,

Az = (Cyco8mxy + Gy sinnyxy) expli(éx; — wt)], a <xy < b, (32)
Az = (Cs3cosm,xy + Gy sinnyxy) expli(éx) — wt)], —b <x; < —a,
where
w? v? 1
17%:_2_52252(_2_1)7 C%:—,
I a €11y (33)
Zw_z_éZéZ(v_z_l) C2*L
T2 A A ’ ey

At the interfaces of x, = +a we must impose the continuity of E5, H; and B,. The continuity of E£3 and B,
are not independent. Electric fields may also exist in the free space surrounding the film. If the fields in the
film can be well described by the two-dimensional equations, the two-dimensional equations can be used
together with the three-dimensional equations for the fields in the free space in the manner of Tiersten
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(1969). Therefore our main purpose is to examine waves in the film, for which we study the case of perfect
magnetic walls (Lee and Yang, 1993) with vanishing tangential H and normal D at x, = £b. Then the con-
tinuity and boundary conditions require

Cicosya+ Gysinnya = Cycosnya + Gy sinn,a,

Cicosna — Gysinya = C3cosnya — Gs sinn,a,

1, (=C\ sinnya + Gy cosnya) = n,(—C sinn,a + G cos y,a), (34)

1, (Cy sinn a + Gy cosnya) = n,(Cy sing,a + G3 cos 1,a),

— Cysinyy,b + Gy cos b =0,

Cssinn,b + Gicosn,b = 0.
For nontrivial solutions the determinant of the coefficient matrix has to vanish, which determines the dis-
persion relations of the waves

[, sin (1,a) cos ny(a — b) — n, cos (i,a) sinny(a — b))

x [n, cos (n,a) cosn,(a — b) + n, sin (,a) sinn,(a — b)] = 0. (35)

Eq. (35) has two factors, one for symmetric waves and the other for anti-symmetric waves. In terms of the
wave speed v, (35) can be written as

V2 1/2 V2 1/2 vz 1/2 V2 1/2
t A téa—-b)%-1) =(=5-1 L
mea(=1) ecan(z-1) = (5-1) /(G)

Vz 1/2 V2 1/2 V2 1/2 vz 1/2

Y “n(=-1) =—-(5-1 L) .
cotsa(p=1) eorctan)(5-1) =~(5-1) /(5

Clearly, (36) describes dispersive waves. When a = b, it reduces to the equations for the dispersion relations
of TE waves in a single-layered film (Lee and Yang, 1993).

(36)

5.2. TM waves from the three-dimensional equations

TM waves are described by

A1 :A1<x1,l)7 A2 :Az(xl,t), A3 =0. (37)
The governing equations are
1. 1.
A1y — Ao = g/‘ll, Ay — Ay = EA% (38)
which are equivalent to
1. 1.
A+ 410 =41, Aot + Ao = 5 4o,
c ¢
A+ 42, =0. (39)

The following represents a wave solution to (39):

A, = %7 (—=Csinnx, + Geosnxy) expli(éx; — wi)],

Ay = (Ccosnxy + Gsinnxy) expli(éxy — wt)].
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Eq. (40) generates the following field components:

B; = o (Ccos nxy + Gsinnxy) expli(&x; — wi)],
2

Ey = w(Csin e, — G eos ) expli(én — wf)], (41)
2

E, =SB,
v

Egs. (37)—(41) apply to each layer of the waveguide in Fig. 4 when the corresponding material constants of
the layer are used. Therefore we write the TM wave solutions in each layer as

i7’/1
&
Ay = (C] cosnx2 + Gy sin ﬂle) exp[ (fxl — a)t)] |x2| <a,

A, = — (—=Cysinnxy + Gy cosnxy) expli(éx; — wr)],  |x| < a,

i
A = Z (=Cysinnyxy + Gycosnyxy) expli(éxy — wt)], a <x; < b, 2)

Ay = (Cycosnyxs + Gasiny,x;) expli(éxy — wt)], a < xy < b,

A = Zz (—=Cssinnyx; + Gy cosnyxs) expli(éx) — wt)], —b <x; < —a,
Ay = (C5c08myx3 + Gy siny,x;) expli(éxy — wr)], —b <x < —a.

At the interfaces of x, = +-a we must impose the continuity of Hs, E; and D,. The continuity of H5 and D,
are not independent. Consider the case of perfect magnetic walls at x, = +b. Then the continuity and
boundary conditions require

iwv . iwv .

by (Cicosma + Gy sinna) = by (C, cosnya + Gy sinn,a),
1 2

iov i

i .
(Cycosna — Gysinna) = a)zv (Cscosn,a — Gssiny,a),
)

2
1
1, (Cysinna — Gycosnya) = n,(Cy sinn,a — Gy cosnya),
n (=C;sinnya — Gy cosnya) = n,(—Cs sinn,a — G cos nya),
Cycos,b + Gy sinn,b =0,
C3cosn,b — Gssinn,b = 0.

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which determines the dis-
persion relations of the waves

2
T AA 3 { [ ¢ty sin(n,a) sinn,(a — b) + c31, cos (i, a) cos ny(a — b)]
¢
[ ciny cos(ma) sinny(a — b) — c3n, sin(ia) cosn,(a — b)] } = 0. (44)

In terms of v, (44) takes the following form:

2\ 2\ 2\ 2\
tanéa(c—%— 1) tané(a—b)(c—%— 1) = —cg(c—%— 1> c%(—— 1) ,

vz 1/2 V2 1/2 , V2 1/2 s V2 1/2
cotfa(c—%— 1) tan (a — b) <C—§— 1) :cz<c—§—1> e (c_%_ 1) )

which describes dispersive waves. When a = b, (45) reduces to the equations for the dispersion relations of
TM waves in a single-layered film (Lee and Yang, 1993).

o)
—to

(45)
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5.3. TE waves from uncoupled two-dimensional equations

Consider
AV =4 =0, AV =4V (x,,0). (46)
Then the nontrivial field components are

n—1) nm

n - (n)
E(S):_AS ’ Bl 2/’1

Ay, BY = -4 (47)
From the constitutive relations we obtain
(n) (nn) 3 (n)
D3 = *Mu A3 ,
n—1 n—1,n—1
H& ):Ngl )_A3 ) (48)

(n) (nn) 4 (n)
Hz :*sz Aa,la

where couplings among fields of different orders (m # n) have been neglected. Substituting (48) into (14);
gives

nn n n—1,n—1) nmy 2 nn n)

_Ngz A311 +N11 (Zh) A( = _Mgl )A ) (49)
where the surface term H§”> vanishes for a perfect magnetic wall. Substituting a wave solution
A( ) = = exp[i(&x; — wt)] into (49) gives the following dispersion relation:

nn nn n—1,n— nrw
Mot = NEE N (3 (50)

For the three-layered plate in Fig. 4, the coefficients in (50) are given by

n.n & .
MU =g (1 ——) —ﬁ cos(nn) sm( b) tes

5 + _n cos(nm) sin (nn g),

b

nn 1 a 1 1 a
l a 1 | . D2 S
+M—Oz—mcos[(n+ )7] sin {(n%— )nﬂ,

NG = uio (1 - %) - ,uolnn cos(nm) sin ( b) + uio % + /JOIH cos(nm) sin (m'c %)

5.4. TM waves from uncoupled two-dimensional equations

Consider
A = A1), AV =4V V(e r), AV =0 (52)
Then the nontrivial field components are
E(1n) _ _1;1(171)7 E(anl) _ _A;nfl%
B0 A 1 o (53)

2h
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From the constitutive relations we obtain

n nn) (1) n—1) n—1,n—1) (n—1)
D(l = _M(ll' )A1 ) D(z = _Mzz Az ) 54
H(Vt—l) :N(rz—l,n—l)(A(n ) 714 ) ( )
3 11 2,1 2h
Substituting (54) into (14) , gives
i Nn I,n—1) (A(nf] N —A ) _ _M(n,n)A(”)
2h 2,1 2h 11 1 (55)
n—1,n—1 n—1 nm n n—1,n—1) (n—1)
_Ngl >(A§,11)_EA(1,1>> :_Mgz )Az ’
where couplings among different orders have been neglected. From (55) we can obtain
nm\ 2 Ngrrl‘”i]) (n—1) NYTIJHU (n—1) nm. () - (n—1) - (n)
—(ﬂ> M (Az,l - ﬂA ) + Yl (Azm - ﬁAm) =4y, - 2hA (56)
or
(n—1,n—1) (n—1,n—1)
mt)ZN11 n-1) . Ni (=1) _ 5(=1)
- <_ n.n B3 + n—1n—1 B3~1] = B3 (57)
)
Substituting Bg"* ) = expli(éx; — wt)] into (57) gives the dispersion relations of TM waves
N(n—Ln 1) an 1,n—1)
= l(rll—u. ) &+ (2;,) " (nm) G8)
M3, My
where
Mg’;v”) =& (1 — g) +(l’l—i711)7'5 COS[(?’! =+ 1)71?] sin [(}’l =+ 1)72?%:|
+szgchos[(n+ 1)z sin [(ll+ l)ng}. (59)
b (n+ D= b

5.5. TE waves from coupled two-dimensional equations

In applications the first few modes are used often. In the simple, uncoupled two-dimensional equations
above, couplings among different orders of the two-dimensional equations are neglected. The modes these
uncoupled equations describe are approximations of the corresponding three-dimensional modes. If cou-
plings among different orders of the two-dimensional equations are included, better approximations of
the three-dimensional modes can be expected. For example, consider

A1:07 A2:07

4
=34 (1) cos T (1 - ).
n=0 2



6674 J.S. Yang, H.G. Zhou | International Journal of Solids and Structures 42 (2005) 6662—6679

From the constitutive relations we obtain

4
n m,n « (m)
Dg):_ZMgl )AS (x17t)’
m=0
(n—=1) : (m=1n=1) 1T (m)
H :ZNII ZhA (x1,2), (62)
m=0

Substituting (62) into (14)3

_ZN A0 + (5 ) szm bty xl,t)——ZM’"" A, 0), (63)

m=0
where n=0,1,2,3,4. Consider the propagation of the following wave:

Ag’”> = C" expli(éx, — wt)], (64)

where m = 0,1,2,3,4. C" is the wave amplitude. Substituting (64) into (63) gives the following linear equa-
tions for C™:

.Mk

3
Il
=3

NGE — M| <o,

NE

2
NEVE - (Z) NG -] e o,

3
Il
)
T

8]

N - M({f‘”wﬂ cim =, (65)

7=
=
B3
\I\/)
U
0o
_|_
RS
S
N—

3
Il
o

m 37'[ ? m— m
Néz'”fz—f-( ) Nil 1,2) —M§1’3)w2 C(m) =0,

M- 1-

h

m 2 m— m m
N224f + ( n) Ngl b _M§1’4)w2‘| C( " =0.

Il
o

m

For nontrivial solutions the determinant of the coefficient matrix has to vanish, which gives the dispersion
relations. In (65),

2(ey — . 2(ey — _
M = (’(;:_ n?n) cos(m + n)msin(m + n)n% + M cos(m — n)msin(m — n)ng
2(v, — . b 2w - _ b
NE’{”") — (51:2_ n_;;t) cos(m — n)msin(m — n)n; - (in(—tv—211—+\}12))n cos(m+n+2)msin(m+n+ 2)n—,
N — 2(v2 =) cos(m + n)msin(m + n)7rg + 20 —v) cos(m — n)msin(m — n)ng (66)
2 (m+n)n b (m—n)n b’

5.6. Comparisons of two- and three-dimensional solutions

We compare (36) with (50) and (65) for TE waves, and (45) with (58) for TM waves. Dispersion relations
in terms of the following dimensionless variables are calculated and plotted:
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x=e/(g). o=o/(of). o= o

We are interested in long waves with a small wave number X, which are used more often in appli-
cations.

Fig. 5 shows the comparison of the first few branches of the dispersion curves for TE waves. The figure
shows that the dispersion curves of the uncoupled two-dimensional equations agree qualitatively with those
from the three-dimensional equations, but the two-dimensional equations and solutions are much simpler.
Similar results can be seen in Fig. 6 for TM waves.

If couplings among different orders of the two-dimensional equations are considered, the dispersion
curves of the two-dimensional equations approximate those of the three-dimensional equations better
(See Fig. 7 for TE waves and its comparison with Fig. 5). The cutoff frequencies (frequencies for vanishing
wave numbers) are still off. These cutoff frequencies usually can be adjusted by introducing correction fac-
tor(s) (Mindlin, 1955; Lee and Yang, 1993a; Lee and Yu, 1994), which needs to be done in specific cases and
is not pursued here.

- Q
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12+ o iii...n=3
1_-
0.8+ Cii.on=2
ol n=1
0.4
02+

0

0.0 0.2 04 0.6 08 10

Fig. 5. Dispersion relations of TE waves. b = 2a, ¢ = 2¢,, solid lines: 3-D solutions, dotted lines: 2-D uncoupled solutions.
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Fig. 6. Dispersion relations of TM waves. b = 2a, ¢, = 2¢,, solid lines: 3-D solutions, dotted lines: 2-D uncoupled solutions.
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181 Q
i
14+
14

Fig. 7. Dispersion relations of TE waves. b = 2a, & = 2¢,, solid lines: 3-D solutions, dotted lines: 2-D coupled solutions.

6. Conclusion

Two-dimensional equations for electromagnetic waves in layered dielectric plates are derived. The der-
ivation differs from those in the literature by using a variational principle which results in a major simpli-
fication of the equations. The equations obtained can describe long waves in a multi-layered dielectric plate.

They are simpler than the three-dimensional equations and can be used to study finite dielectric resonators,
and surface waves guided by dielectric films.
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Appendix A. Derivation of two-dimensional constitutive relations

For a,b=1,3:

/H sin——— ) (1 —y)dy = Z/ vath—Fvang)sm(n—;l) (1 —y)dy

> [“”ZW sin P (1), 3 s 51— )

xsin% v)dy = ZB ZN:/ vabsm 1) (1—¢)sinw(l—¢)dw

2
+ZB'"Z/ vgzcos— (1 —y)sin ( ) (1 —y)dy
:ZB}, +ZBM mn ZNmn m (Al)
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where ;= h;/h, and

m" Z / ab Sln 1) (1 - lﬁ) sin (l’l +21)TE(1 - l//)dlp = N(b’:s") :Ngll;m)7
7=

A2
N(mﬂ)_ N 174 ; mn | . (n—}—l)n i d ( )
=3 /7< —yysin DTy ay
Similarly,
! N 174
Hén)z[ Hzcos%(l—l//)leZZ/w (vgbBb—&—vngz)cos%(l—zp)dlp
:Z/” |f’2hZB’" : J(l—lp)ﬁ-véz;Bg”)cos%(l—lp) COS%(]—[ﬁ)dl//
v 1) nn
_ZB Z/ 2bsm (1—¢)cos7(1_¢)d¢
—i—ZB Z/ vzzcos (l—xp)cos—(l—x//)dlp
ZB *ZB ZN ) (A3)
where

N
m,n) 1 nfn m
N :Z/w i sin DT (1) cos™ (1 y)dy = N,
I=1 -1

o N " ) m - - (A4)
:Z vzchST(l—$)0057(1—¢)dlp=N22' .
I=1 1-1
For the electric constitutive relations, we have
D" = [ D 1 - E E 1—
/ cos ™ (1 ) dy = Z/%l 6L En + z>cos2< V) dy
N 1) nm
:Z ZE cos— (I—y +saZZE (I —y) cosj(l—lp)dl,b
= ZE””) zN: /WI I 003 (1 — ) cos = (1 — ) dyp
a m ’ =1 78 18ab 2 2

+ZE¥”§/% tysin LT (1_@%5%(1_@@
:ZEZM) mn)+zE mn Zan m (AS)

174

e, cos—(l - x//)cos%(l —y)dy = M/()r:,n) :M‘(;Zm’
Vi
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&, sm%l)n(l —) cos%(l —y)dy,

I-1

=2

N
1=1
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m n
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DY / D, sm ) (1—y)dy = Z / (e Ep + ehEs) s1n@(l —y)dy
1 . 1
*Z/ [ethEb cos— - +8222E sm + i (1-vy) sm@(l—w)dd/
Vi

=38 ZNJ/ #, cos’ )(1_¢)sm@<1_¢>d¢

1

+ZE Z/ gzzsm—l)”(l_lp)sin@(l_lp)dw

(78

:ZEbm mn +ZEm mn ZM’"" : (A7)
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N 17
Z/w '52};005 l—lﬁ)siHW(l_w)dw:Mgm)’

=1

~

N l) (1) (A.8)
n n n.m
Z/ sin " VT 1y in DT gy ay < ey
=1 J¥i-
Appendix B. Derivation of two-dimensional boundary conditions
n _
/ dt/ 'Sijknj(Hk - Hk)SAl ds
to Su A
f
:/ dt/ dl/ dxs[(noH3 — naHs — n3Hs + n3H,) 84,
Cu —h
—|— (nsHy — ”3171 —nHy +nH3)34,
I’lle —I’ll 2 —n2H1 +n2H1)8A ]
/ dt/ dl/ dJC2 I’l3H2 +I13H2)6A1
Cy
I’l3H1 — }13H1 — n1H3 + H1H3)6A2 —+ (}’lle — I’lle)BA ]
/ dl/ dl/ d.x2 —s1H» +S1H2)6A1
Cy
SlHl — S1H1 +S3H3 — S3H3)8A2 + ( S3H2 +S3H2)8A ]
_ / dt/ dl/ ds[(—Ha + Ha)3(A - 5) + (H -s — H - 5)43]. (B.1)
Cu
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