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Abstract

Two-dimensional equations for electromagnetic fields in a multi-layered thin dielectric film are derived from the
three-dimensional equations of electrodynamics by expanding the vector potential of the electromagnetic fields into
trigonometric series expansions of the film thickness coordinate. The lower order equations are examined. It is shown
that they can describe certain long waves in the film. The equations are useful for modeling thin film devices.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

For mechanical waves in a film or plate it has been known for a long time that two-dimensional equa-
tions can be derived from the three-dimensional theory of elasticity by expanding the mechanical displace-
ment vector into power or trigonometric series expansions of the plate thickness coordinate (Mindlin,
1955). According to Mindlin (1955), this procedure can be traced back to Cauchy and Poisson. The result-
ing two-dimensional plate equations are approximate in nature. Since they are much simpler than the three-
dimensional equations, they often allow theoretical analyses of waves propagating in a plate (Mindlin,
1955), and waves in a plate on a substrate (Tiersten, 1969). The literature on elastic plates is numerous.
For electromagnetic waves in a single-layered dielectric film, two-dimensional equations were derived in
a similar manner in Lee and Yang (1993a) and Lee and Yu (1994), and were used in the analysis of plate
waveguides and resonators (Lee and Yang, 1993b; Lee et al., 1994, 1996). Two-dimensional equations for
0020-7683/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.06.017

* Corresponding author.
E-mail address: jyang@unlserve.unl.edu (J.S. Yang).

mailto:jyang@unlserve.unl.edu


J.S. Yang, H.G. Zhou / International Journal of Solids and Structures 42 (2005) 6662–6679 6663
coupled electromagnetic and mechanical fields in a plate were also developed (Eringen, 1989; Altay and
Dokmeci, submitted for publication). The two-dimensional equations in Lee and Yang (1993a), Lee and
Yu (1994), Eringen (1989) and Altay and Dokmeci (submitted for publication) are all for single-layered
films. Multi-layered films are common structures for microwave devices (Marcuse, 1989). The recent devel-
opment of superlattice offers more possibilities of multi-layered devices (Christen et al., 2003). In this paper
we derive two-dimensional equations for electromagnetic fields in a multi-layered thin dielectric film. The
three-dimensional equations are summarized in Section 2. Two-dimensional equations are obtained in Sec-
tion 3, and are reduced to a few special cases in Section 4. To examine the accuracy of the two-dimensional
equations, in Section 5 we compare solutions for a few waves in a three-layered dielectric waveguide from
the two-dimensional equations with solutions for the same waves from the three-dimensional equations.
Finally, some conclusions are drawn in Section 6.
2. Three-dimensional equations

The three-dimensional equations of electrodynamics are (Panofsky, 1955)
eijkEk;j ¼ � _Bi; eijkHk;j ¼ _Di þ J i; Bi;i ¼ 0; Di;i ¼ q; ð1Þ

where E is the electric field, D is the electric displacement, B is the magnetic induction, H is the magnetic
field, J is the free current density, and q is the free charge density. The summation convention for repeated
tensor indices and the convention that a comma followed by an index denotes partial differentiation with
respect to the coordinate associated with the index are used. A superimposed dot represents differentiation
with respect to time t. eijk is the permutation tensor. The equations in (1) are accompanied by the following
constitutive equations describing behaviors of a specific material:
Di ¼ eijEj; Bi ¼ lijHj; ð2Þ
where eij is the electric permittivity, and lij is the magnetic permeability. With the introduction of a vector
potential A and a scalar potential / by (Panofsky, 1955)
Ek ¼ �/;k � _Ak; Bk ¼ ekijAj;i. ð3Þ
Eq. (1)1,3 are identically satisfied. (1)2,4 can be written as equations in terms of the potentials. Consider a
finite dielectric body occupying a region V (see Fig. 1). The boundary surface of V is denoted by S, with a
unit exterior normal n. For boundary conditions we consider the following partitions of S (see Fig. 1):
S/ [ SD ¼ SA [ SH ¼ S;

S/ \ SD ¼ SA \ SH ¼ 0.
ð4Þ
V

SA

SH

SD
Sθ

n 

x2

x3 

x1

Fig. 1. A dielectric body and partitions of its boundary.
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On S we may prescribe
/ ¼ �/; on S/;

Dini þ �d ¼ 0; on SD;

eijknjAk ¼ �ai; on SA;

eijknjHk ¼ �hi; on SH ;

ð5Þ
where �/; �d; �ai and �hi are known boundary data. Consider the following variational functional (Nelson,
1979; Lee, 1991; Yang, 1991):
PðA;/Þ ¼
Z t1

t0

dt
Z
V

1

2
ðeijEiEj � l�1

ij BiBjÞ þ J iAi � q/

� �
dV �

Z t1

t0

dt
Z
SD

�d/dS �
Z t1

t0

dt
Z
SH

�hiAi dS

ð6Þ
with admissible functions satisfying
/ ¼ �/; on S/;

eijknjAk ¼ �ai; on SA;

Aiðx; t0Þ ¼ A0
i ; Aiðx; t1Þ ¼ A1

i ; in V ;

ð7Þ
where A0
i and A1

i are prescribed data at t0 and t1. Then
dP ¼
Z t1

t0

dt
Z
V
½ðDi;i � qÞd/� ðeijkHk;j � _Di � J iÞdAi�dV �

Z t1

t0

dt
Z
SD

ðDini þ �dÞd/dS

þ
Z t1

t0

dt
Z
SH

ðeijknjHk � �hiÞdAi dS. ð8Þ
Therefore the stationary condition of (6) yields (1)2,4 and (5)2,4. In the problems we are interested in, J and
q are both zero. For waves in a source free region, a vector potential A alone is sufficient (Lee and Yang,
1993). In this case Di,i = 0 is essentially implied by _Di ¼ eijkHk;j.
3. Derivation of two-dimensional equations

Consider an N-layered plate of total thickness 2h (see Fig. 2). x2 is the thickness coordinate. The x3 and
x1 axes are in the middle surface. The two major surfaces and the N � 1 interfaces are sequentially deter-
mined by x2 = �h = h0,h1, . . .,hN�1, and hN = h.
h0 = -h

h1

hN-1

hN = h 

x1

x2

Fig. 2. A multi-layered thin film.
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3.1. Potential expansions

We begin with the following expansion of the vector potential (Lee and Yang, 1993a; Lee and Yu, 1994):
Aaðx1; x2; x3; tÞ ¼
X1
n¼0

AðnÞ
a ðx1; x3; tÞ cos

np
2
ð1� wÞ; a ¼ 1; 3;

A2ðx1; x2; x3; tÞ ¼
X1
n¼0

AðnÞ
2 ðx1; x3; tÞ sin

ðnþ 1Þp
2

ð1� wÞ; / ¼ 0; ð9Þ
where
w ¼ x2
h
. ð10Þ
We want to derive two-dimensional equations for AðnÞ
i . Substituting (9) into (3), we can write
Ea ¼
X1
n¼0

EðnÞ
a cos

np
2
ð1� wÞ;

E2 ¼
X1
n¼0

EðnÞ
2 sin

ðnþ 1Þp
2

ð1� wÞ;

Ba ¼
X1
n¼0

BðnÞ
a sin

ðnþ 1Þp
2

ð1� wÞ;

B2 ¼
X1
n¼0

BðnÞ
2 cos

np
2
ð1� wÞ;

ð11Þ
where
EðnÞ
i ¼ � _A

ðnÞ
i ;

BðnÞ
1 ¼ ðnþ 1Þp

2h
Aðnþ1Þ
3 � AðnÞ

2;3;

BðnÞ
2 ¼ AðnÞ

1;3 � AðnÞ
3;1;

BðnÞ
3 ¼ AðnÞ

2;1 �
ðnþ 1Þp

2h
Aðnþ1Þ
1 .

ð12Þ
3.2. Field equations

Let the two-dimensional region occupied by the middle plane of a finite film in the x3 � x1 plane be A

(see Fig. 3). The volume integrals in (8) can be written as
dP ¼
Z t1

t0

dt
Z
V
�ðeijkHk;j � _DiÞdAi dV

¼
Z t1

t0

dt
Z
A
dx1 dx3

XN
I¼1

Z hI

hI�1

½�ðH 3;2 � H 2;3 � _D1ÞdA1 � ðH 1;3 � H 3;1 � _D2ÞdA2

� ðH 2;1 � H 1;2 � _D3ÞdA3�dx2. ð13Þ



A

n 

C 
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x3

s 

Fig. 3. A finite region in the middle surface of the film and its boundary.
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Substitution of (9) into (13) yields
� np
2h

H ðn�1Þ
3 � H ðnÞ

2;3 þ
1

h
H

ðnÞ
3 ¼ _D

ðnÞ
1 ;

H ðnÞ
1;3 � H ðnÞ

3;1 ¼ _D
ðnÞ
2 ;

H ðnÞ
2;1 þ

np
2h

H ðn�1Þ
1 � 1

h
H

ðnÞ
1 ¼ _D

ðnÞ
3 ;

ð14Þ
where the resultant of the H field and the surface terms are defined by
H ðnÞ
a ¼

Z 1

�1

Ha sin
ðnþ 1Þp

2
ð1� wÞdw; H ðnÞ

2 ¼
Z 1

�1

H 2 cos
np
2
ð1� wÞdw;

DðnÞ
a ¼

Z 1

�1

Da cos
np
2
ð1� wÞdw; DðnÞ

2 ¼
Z 1

�1

D2 sin
ðnþ 1Þp

2
ð1� wÞdw;

HðnÞ
a ¼ HaðhÞ � ð�1ÞnHað�hÞ.

ð15Þ
Note that because of the use of the variational formulation and / = 0, there are no two-dimensional equa-
tions corresponding to Di,i = 0. This is an important simplification compared to the equations in Lee and
Yang (1993a) and Lee and Yu (1994) which were derived without using the variational formulation. Since a
multi-layered film is a body with piecewise constant material parameters which do not have derivatives
across an interface, the integrations in the variational formulation have to be performed layer by layer.
Interface continuity conditions on the potentials are guaranteed by (9). Continuity of tangential H and nor-
mal D are part of the stationary conditions of the variational procedure. These conditions can only be con-
sidered as being satisfied approximately by two-dimensional solutions.

3.3. Constitutive relations

For the Ith layer, we write the constitutive relations as
Di ¼ eIijEj; Hi ¼ mIijBj; ð16Þ

where mIij is the inverse of l

I
ij. Substituting (16) and (11) into (15), we obtain the following two-dimensional

constitutive relations (see Appendix A):
DðnÞ
i ¼

X
m

M ðm;nÞ
ij EðmÞ

j ;

H ðnÞ
i ¼

X
m

N ðm;nÞ
ij BðmÞ

j .
ð17Þ
Eq. (17) are relations among the two-dimensional fields. Their coefficients depend on the material constants
and geometry of the layers.
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3.4. Boundary conditions

In summary, we have obtained the field-potential relations (12), field equations (14), and constitutive
relations (17). With successive substitutions, (12) can be written as equations for potentials of various
orders. Let the boundary curve of the two-dimensional regionA occupied by themiddle surface of a finite film
be C which has a unit outward normal na, a = 1,3. Then a unit tangent sa can be determined by (see Fig. 3)
s ¼ e2 � n; si ¼ eijkdj2nk;

s1 ¼ n3; s2 ¼ 0; s3 ¼ �n1;
ð18Þ
where e2 is the unit vector along x2. We also introduce an Hi such that
�hi ¼ eijknjHk. ð19Þ

Then the two-dimensional boundary conditions can be determined from the last term in (8). It can be con-
cluded (see Appendix B) that on the boundary curve of a two-dimensional domain we may prescribe
H 2 or A � s
and H � s or A2.

ð20Þ
The determination of the form of the boundary conditions is another advantage of using the variational
formulation.
4. Special cases

The two-dimensional equations obtained in the previous section are rather general. In this section we
reduce them to a few special cases.

4.1. An isotropic film

When every layer is isotropic, we have
eIij ¼ eIdij; mIij ¼ mIdij; ð21Þ
which implies
M ðm;nÞ
a2 ¼ 0; M ðm;nÞ

2a ¼ 0; M ðm;nÞ
13 ¼ M ðm;nÞ

31 ¼ 0;

M ðm;nÞ
11 ¼ M ðm;nÞ

33 ¼
XN
I¼1

Z wI

wI�1

eI cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw;

M ðm;nÞ
22 ¼

XN
I¼1

Z wI

wI�1

eI sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw;

ð22Þ

N ðm;nÞ
a2 ¼ 0; N ðm;nÞ

2a ¼ 0; N ðm;nÞ
13 ¼ N ðm;nÞ

31 ¼ 0;

N ðm;nÞ
11 ¼ N ðm;nÞ

33 ¼
XN
I¼1

Z wI

wI�1

mI sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw;

N ðm;nÞ
22 ¼

XN
I¼1

Z wI

wI�1

mI cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw.

ð23Þ
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Then the constitutive relations can be written as
DðnÞ
a ¼

X
m

M ðm;nÞ
11 EðmÞ

a ; DðnÞ
2 ¼

X
m

M ðm;nÞ
22 EðmÞ

2 ;

H ðnÞ
a ¼

X
m

N ðm;nÞ
11 BðmÞ

a ; H ðnÞ
2 ¼

X
m

N ðm;nÞ
22 BðmÞ

2 .
ð24Þ
4.2. A single-layered film

When the film is of one-layer only, the constitutive relations reduce to
H ðnÞ
a ¼ mabB

ðnÞ
b þ ma2

X
m

cðnþ1ÞmB
ðmÞ
2 ;

H ðnÞ
2 ¼ m2b

X
m

cðmþ1ÞnB
ðmÞ
b þ m22ð1þ dn0ÞBðnÞ

2 ;

DðnÞ
a ¼ eabð1þ dn0ÞEðnÞ

b þ ea2
X
m

cðmþ1ÞnE
ðmÞ
2 ;

DðnÞ
2 ¼ e2b

X
m

cðnþ1ÞmE
ðmÞ
b þ e22E

ðnÞ
2 ;

ð25Þ
where dmn is the Chronecker delta, and
cmn ¼
Z 1

�1

sin
mp
2

ð1� wÞ cos np
2
ð1� wÞdw ¼

0; mþ n even;

4m
ðm2 � n2Þp ; mþ n odd.

8<
: ð26Þ
Eq. (25) are the equations derived by Lee and Yu (1994).

4.3. A single-layered isotropic film

If a film is isotropic and single layered, (25) further reduces to
DðnÞ
a ¼ eð1þ dn0ÞEðnÞ

a ; DðnÞ
2 ¼ eEðnÞ

2 ;

H ðnÞ
a ¼ mBðnÞ

a ; H ðnÞ
2 ¼ mð1þ dn0ÞBðnÞ

2 ;
ð27Þ
which are the equations derived by Lee and Yang (1993).
5. Applications to waveguides

Special cases of the two-dimensional equations obtained have been examined for waves in single-layered
isotropic and anisotropic films (Lee and Yang, 1993a; Lee and Yu, 1994). In these special cases the disper-
sion curves of waves described by the two-dimensional equations show good agreement with the dispersion
curves of the same waves when described by the three-dimensional equations. To examine the more general
case of multi-layered films we consider waves propagating in a three-layered isotropic waveguide (see
Fig. 4). In applications symmetric waveguides are used most often. In isotropic waveguides waves can
be separated into transverse electric (TE) and transverse magnetic (TM) waves. They will be analyzed sep-
arately, both from the three- and two-dimensional equations for comparison. We study straight-crested
waves independent of x3.
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Fig. 4. A three-layered, symmetric and isotropic film.
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5.1. TE waves from the three-dimensional equations

TE waves can be described by
A1 ¼ A2 ¼ 0; A3 ¼ A3ðx1; tÞ. ð28Þ

From (1)–(3) the governing equations are
A3;11 þ A3;22 ¼
1

c2
€A3;

1

c2
¼ el0; ð29Þ
where l0 is the magnetic permeability of free space. The following A3 represents a wave solution to (29):
A3 ¼ ðC cos gx2 þ G sin gx2Þ exp½iðnx1 � xtÞ�;

g2 ¼ x2

c2
� n2 ¼ n2

m2

c2
� 1

� �
; m2 ¼ x2

n2
;

ð30Þ
where C and G are undetermined constants. (30)1 generates the following field components:
E3 ¼ ixðC cos gx2 þ G sin gx2Þ exp½iðnx1 � xtÞ�;
B1 ¼ gð�C sin gx2 þ G cos gx2Þ exp½iðnx1 � xtÞ�;
B2 ¼ �inðC cos gx2 þ G sin gx2Þ exp½iðnx1 � xtÞ�.

ð31Þ
Eqs. (28)–(31) apply to each layer of the waveguide in Fig. 4 when the corresponding material constants of
the layer are used. Therefore we write the TE wave solutions in each layer as
A3 ¼ ðC1 cos g1x2 þ G1 sin g1x2Þ exp½iðnx1 � xtÞ�; jx2j < a;

A3 ¼ ðC2 cos g2x2 þ G2 sin g2x2Þ exp½iðnx1 � xtÞ�; a < x2 < b;

A3 ¼ ðC3 cos g2x2 þ G3 sin g2x2Þ exp½iðnx1 � xtÞ�; �b < x2 < �a;

ð32Þ
where
g21 ¼
x2

c21
� n2 ¼ n2

m2

c21
� 1

� �
; c21 ¼

1

e1l0

;

g22 ¼
x2

c22
� n2 ¼ n2

m2

c22
� 1

� �
; c22 ¼

1

e2l0

.

ð33Þ
At the interfaces of x2 = ±a we must impose the continuity of E3, H1 and B2. The continuity of E3 and B2

are not independent. Electric fields may also exist in the free space surrounding the film. If the fields in the
film can be well described by the two-dimensional equations, the two-dimensional equations can be used
together with the three-dimensional equations for the fields in the free space in the manner of Tiersten
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(1969). Therefore our main purpose is to examine waves in the film, for which we study the case of perfect
magnetic walls (Lee and Yang, 1993) with vanishing tangential H and normal D at x2 = ±b. Then the con-
tinuity and boundary conditions require
C1 cos g1aþ G1 sin g1a ¼ C2 cos g2aþ G2 sin g2a;

C1 cos g1a� G1 sin g1a ¼ C3 cos g2a� G3 sin g2a;

g1ð�C1 sin g1aþ G1 cos g1aÞ ¼ g2ð�C2 sin g2aþ G2 cos g2aÞ;
g1ðC1 sin g1aþ G1 cos g1aÞ ¼ g2ðC3 sin g2aþ G3 cos g2aÞ;
� C2 sin g2bþ G2 cos g2b ¼ 0;

C3 sin g2bþ G3 cos g2b ¼ 0.

ð34Þ
For nontrivial solutions the determinant of the coefficient matrix has to vanish, which determines the dis-
persion relations of the waves
g1 sin g1að Þ cos g2 a� bð Þ � g2 cos g1að Þ sin g2 a� bð Þ½ �
� g1 cos g1að Þ cos g2 a� bð Þ þ g2 sin g1að Þ sin g2 a� bð Þ½ � ¼ 0. ð35Þ
Eq. (35) has two factors, one for symmetric waves and the other for anti-symmetric waves. In terms of the
wave speed v, (35) can be written as
tan na
m2

c21
� 1

� �1=2

cot nða� bÞ m2

c22
� 1

� �1=2

¼ m2

c22
� 1

� �1=2
,

m2

c21
� 1

� �1=2

;

cot na
m2

c21
� 1

� �1=2

cot nða� bÞ m2

c22
� 1

� �1=2

¼ � m2

c22
� 1

� �1=2
,

m2

c21
� 1

� �1=2

.

ð36Þ
Clearly, (36) describes dispersive waves. When a = b, it reduces to the equations for the dispersion relations
of TE waves in a single-layered film (Lee and Yang, 1993).

5.2. TM waves from the three-dimensional equations

TM waves are described by
A1 ¼ A1ðx1; tÞ; A2 ¼ A2ðx1; tÞ; A3 ¼ 0. ð37Þ
The governing equations are
A1;22 � A2;12 ¼
1

c2
€A1; A2;11 � A1;12 ¼

1

c2
€A2; ð38Þ
which are equivalent to
A1;11 þ A1;22 ¼
1

c2
€A1; A2;11 þ A2;22 ¼

1

c2
€A2;

A1;1 þ A2;2 ¼ 0. ð39Þ
The following represents a wave solution to (39):
A1 ¼
ig
n
ð�C sin gx2 þ G cos gx2Þ exp½iðnx1 � xtÞ�;

A2 ¼ ðC cos gx2 þ G sin gx2Þ exp½iðnx1 � xtÞ�.
ð40Þ
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Eq. (40) generates the following field components:
B3 ¼
ixv
c2

ðC cos gx2 þ G sin gx2Þ exp½iðnx1 � xtÞ�;

E1 ¼ mgðC sin gx2 � G cos gx2Þ exp½iðnx1 � xtÞ�;

E2 ¼
c2

m
B3.

ð41Þ
Eqs. (37)–(41) apply to each layer of the waveguide in Fig. 4 when the corresponding material constants of
the layer are used. Therefore we write the TM wave solutions in each layer as
A1 ¼
ig1
n
ð�C1 sin g1x2 þ G1 cos g1x2Þ exp½iðnx1 � xtÞ�; jx2j < a;

A2 ¼ ðC1 cos g1x2 þ G1 sin g1x2Þ exp½iðnx1 � xtÞ�; jx2j < a;

A1 ¼
ig2
n
ð�C2 sin g2x2 þ G2 cos g2x2Þ exp½iðnx1 � xtÞ�; a < x2 < b;

A2 ¼ ðC2 cos g2x2 þ G2 sin g2x2Þ exp½iðnx1 � xtÞ�; a < x2 < b;

A1 ¼
ig2
n
ð�C3 sin g2x2 þ G3 cos g2x2Þ exp½iðnx1 � xtÞ�; �b < x2 < �a;

A2 ¼ ðC3 cos g2x2 þ G3 sin g2x2Þ exp½iðnx1 � xtÞ�; �b < x2 < �a.

ð42Þ
At the interfaces of x2 = ±a we must impose the continuity of H3, E1 and D2. The continuity of H3 and D2

are not independent. Consider the case of perfect magnetic walls at x2 = ±b. Then the continuity and
boundary conditions require
ixv
c21

ðC1 cos g1aþ G1 sin g1aÞ ¼
ixv
c22

ðC2 cos g2aþ G2 sin g2aÞ;

ixv
c21

ðC1 cos g1a� G1 sin g1aÞ ¼
ixv
c22

ðC3 cos g2a� G3 sin g2aÞ;

g1ðC1 sin g1a� G1 cos g1aÞ ¼ g2ðC2 sin g2a� G2 cos g2aÞ;
g1ð�C1 sin g1a� G1 cos g1aÞ ¼ g2ð�C3 sin g2a� G cos g2aÞ;
C2 cos g2bþ G2 sin g2b ¼ 0;

C3 cos g2b� G3 sin g2b ¼ 0.

ð43Þ
For nontrivial solutions the determinant of the coefficient matrix has to vanish, which determines the dis-
persion relations of the waves
� 2

c41c
4
2

c21g1 sinðg1aÞ sin g2ða� bÞ þ c22g2 cosðg1aÞ cos g2ða� bÞ
� ��

� c21g1 cosðg1aÞ sin g2ða� bÞ � c22g2 sinðg1aÞ cos g2ða� bÞ
� ��

¼ 0. ð44Þ

In terms of m, (44) takes the following form:
tan na
m2

c21
� 1

� �1=2

tan nða� bÞ m2

c22
� 1

� �1=2

¼ �c22
m2

c22
� 1

� �1=2
,

c21
m2

c21
� 1

� �1=2

;

cot na
m2

c21
� 1

� �1=2

tan nða� bÞ m2

c22
� 1

� �1=2

¼ c22
m2

c22
� 1

� �1=2
,

c21
m2

c21
� 1

� �1=2

;

ð45Þ
which describes dispersive waves. When a = b, (45) reduces to the equations for the dispersion relations of
TM waves in a single-layered film (Lee and Yang, 1993).
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5.3. TE waves from uncoupled two-dimensional equations

Consider
AðnÞ
1 ¼ AðnÞ

2 ¼ 0; AðnÞ
3 ¼ AðnÞ

3 ðx1; tÞ. ð46Þ

Then the nontrivial field components are
EðnÞ
3 ¼ � _A

ðnÞ
3 ; Bðn�1Þ

1 ¼ np
2h

AðnÞ
3 ; BðnÞ

2 ¼ �AðnÞ
3;1. ð47Þ
From the constitutive relations we obtain
DðnÞ
3 ¼ �M ðn;nÞ

11
_A
ðnÞ
3 ;

H ðn�1Þ
1 ¼ N ðn�1;n�1Þ

11

np
2h

AðnÞ
3 ;

H ðnÞ
2 ¼ �N ðn;nÞ

22 AðnÞ
3;1;

ð48Þ
where couplings among fields of different orders (m 5 n) have been neglected. Substituting (48) into (14)3
gives
�N ðn;nÞ
22 AðnÞ

3;11 þ N ðn�1;n�1Þ
11

np
2h

	 
2

AðnÞ
3 ¼ �M ðn;nÞ

11
€A
ðnÞ
3 ; ð49Þ
where the surface term HðnÞ
a vanishes for a perfect magnetic wall. Substituting a wave solution

AðnÞ
3 ¼ exp½iðnx1 � xtÞ� into (49) gives the following dispersion relation:
M ðn;nÞ
11 x2 ¼ N ðn;nÞ

22 n2 þ N ðn�1;n�1Þ
11

np
2h

	 
2

. ð50Þ
For the three-layered plate in Fig. 4, the coefficients in (50) are given by
M ðn;nÞ
11 ¼ e1 1� a

b

	 

� e1
np

cosðnpÞ sin np
a
b

	 

þ e2

a
b
þ e2
np

cosðnpÞ sin np
a
b

	 

;

N ðn;nÞ
11 ¼ 1

l0

1� a
b

	 

þ 1

l0ðnþ 1Þp cos½ðnþ 1Þp� sin ðnþ 1Þp a
b

h i

þ 1

l0

a
b
� 1

l0ðnþ 1Þp cos½ðnþ 1Þp� sin ðnþ 1Þp a
b

h i
;

N ðn;nÞ
22 ¼ 1

l0

1� a
b

	 

� 1

l0np
cosðnpÞ sin np

a
b

	 

þ 1

l0

a
b
þ 1

l0np
cosðnpÞ sin np

a
b

	 

.

ð51Þ
5.4. TM waves from uncoupled two-dimensional equations

Consider
AðnÞ
1 ¼ AðnÞ

1 ðx1; tÞ; Aðn�1Þ
2 ¼ Aðn�1Þ

2 ðx1; tÞ; AðnÞ
3 ¼ 0. ð52Þ
Then the nontrivial field components are
EðnÞ
1 ¼ � _A

ðnÞ
1 ; Eðn�1Þ

2 ¼ � _A
ðn�1Þ
2 ;

Bðn�1Þ
3 ¼ Aðn�1Þ

2;1 � np
2h

AðnÞ
1 .

ð53Þ
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From the constitutive relations we obtain
DðnÞ
1 ¼ �M ðn;nÞ

11
_A
ðnÞ
1 ; Dðn�1Þ

2 ¼ �M ðn�1;n�1Þ
22

_A
ðn�1Þ
2 ;

H ðn�1Þ
3 ¼ N ðn�1;n�1Þ

11 Aðn�1Þ
2;1 � np

2h
AðnÞ
1

	 

;

ð54Þ
Substituting (54) into (14)1,2 gives
� np
2h

N ðn�1;n�1Þ
11 Aðn�1Þ

2;1 � np
2h

AðnÞ
1

	 

¼ �M ðn;nÞ

11
€A
ðnÞ
1 ;

� N ðn�1;n�1Þ
11 Aðn�1Þ

2;11 � np
2h

AðnÞ
1;1

	 

¼ �M ðn�1;n�1Þ

22
€A
ðn�1Þ
2 ;

ð55Þ
where couplings among different orders have been neglected. From (55) we can obtain
� np
2h

	 
2 N ðn�1;n�1Þ
11

M ðn;nÞ
11

Aðn�1Þ
2;1 � np

2h
AðnÞ
1

	 

þ N ðn�1;n�1Þ

11

M ðn�1;n�1Þ
22

Aðn�1Þ
2;111 � np

2h
AðnÞ
1;11

	 

¼ €A

ðn�1Þ
2;1 � np

2h
€A
ðnÞ
1 ð56Þ
or
� np
2h

	 
2 N ðn�1;n�1Þ
11

M ðn;nÞ
11

Bðn�1Þ
3 þ N ðn�1;n�1Þ

11

M ðn�1;n�1Þ
22

Bðn�1Þ
3;11 ¼ €B

ðn�1Þ
3 . ð57Þ
Substituting Bðn�1Þ
3 ¼ exp½iðnx1 � xtÞ� into (57) gives the dispersion relations of TM waves
x2 ¼ N ðn�1;n�1Þ
11

M ðn�1;n�1Þ
22

n2 þ np
2h

	 
2 N ðn�1;n�1Þ
11

M ðn;nÞ
11

; ð58Þ
where
M ðn;nÞ
22 ¼ e1 1� a

b

	 

þ e1
ðnþ 1Þp cos½ðnþ 1Þp� sin ðnþ 1Þp a

b

h i
þ e2

a
b
� e2
ðnþ 1Þp cos½ðnþ 1Þp� sin ðnþ 1Þp a

b

h i
. ð59Þ
5.5. TE waves from coupled two-dimensional equations

In applications the first few modes are used often. In the simple, uncoupled two-dimensional equations
above, couplings among different orders of the two-dimensional equations are neglected. The modes these
uncoupled equations describe are approximations of the corresponding three-dimensional modes. If cou-
plings among different orders of the two-dimensional equations are included, better approximations of
the three-dimensional modes can be expected. For example, consider
A1 ¼ 0; A2 ¼ 0;

A3 ¼
X4

n¼0

AðnÞ
3 ðx1; tÞ cos

np
2
ð1� wÞ.

ð60Þ
Then
EðmÞ
3 ¼ � _A

ðmÞ
3 x1; tð Þ; Bðm�1Þ

1 ¼ mp
2h

AðmÞ
3 x1; tð Þ; BðmÞ

2 ¼ �AðmÞ
3;1 x1; tð Þ. ð61Þ
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From the constitutive relations we obtain
DðnÞ
3 ¼ �

X4

m¼0

M ðm;nÞ
11

_A
ðmÞ
3 ðx1; tÞ;

H ðn�1Þ
1 ¼

X4

m¼0

N ðm�1;n�1Þ
11

np
2h

AðmÞ
3 ðx1; tÞ;

H ðnÞ
2 ¼ �

X4

m¼0

N ðm;nÞ
22 AðmÞ

3;1 ðx1; tÞ.

ð62Þ
Substituting (62) into (14)3
�
X4

m¼0

N ðm;nÞ
22 AðmÞ

3;11ðx1; tÞ þ
np
2h

	 
2 X4

m¼0

N ðm�1;n�1Þ
11 AðmÞ

3 ðx1; tÞ ¼ �
X4

m¼0

M ðm;nÞ
11

€A
ðmÞ
3 ðx1; tÞ; ð63Þ
where n = 0,1,2,3,4. Consider the propagation of the following wave:
AðmÞ
3 ¼ CðmÞ exp½iðnx1 � xtÞ�; ð64Þ
where m = 0,1,2,3,4. C (m) is the wave amplitude. Substituting (64) into (63) gives the following linear equa-
tions for C (m):
X4

m¼0

N ðm;0Þ
22 n2 �M ðm;0Þ

11 x2
h i

CðmÞ ¼ 0;

X4

m¼0

N ðm;1Þ
22 n2 þ p

2h

	 
2

N ðm�1;0Þ
11 �M ðm;1Þ

11 x2

� �
CðmÞ ¼ 0;

X4

m¼0

N ðm;2Þ
22 n2 þ p

h

	 
2

N ðm�1;1Þ
11 �M ðm;2Þ

11 x2

� �
CðmÞ ¼ 0;

X4

m¼0

N ðm;3Þ
22 n2 þ 3p

2h

� �2

N ðm�1;2Þ
11 �M ðm;3Þ

11 x2

" #
CðmÞ ¼ 0;

X4

m¼0

N ðm;4Þ
22 n2 þ 2p

h

� �2

N ðm�1;3Þ
11 �M ðm;4Þ

11 x2

" #
CðmÞ ¼ 0.

ð65Þ
For nontrivial solutions the determinant of the coefficient matrix has to vanish, which gives the dispersion
relations. In (65),
M ðm;nÞ
11 ¼ 2ðe2 � e1Þ

ðmþ nÞp cosðmþ nÞp sinðmþ nÞp a
b
þ 2ðe2 � e1Þ

ðm� nÞp cosðm� nÞp sinðm� nÞp a
b
;

N ðm;nÞ
11 ¼ 2ðm2 � m1Þ

ðm� nÞp cosðm� nÞp sinðm� nÞp b
a
� 2ðm2 � m1Þ
ðmþ nþ 2Þp cosðmþ nþ 2Þp sinðmþ nþ 2Þp b

a
;

N ðm;nÞ
22 ¼ 2ðm2 � m1Þ

ðmþ nÞp cosðmþ nÞp sinðmþ nÞp a
b
þ 2ðm2 � m1Þ

ðm� nÞp cosðm� nÞp sinðm� nÞp a
b
. ð66Þ
5.6. Comparisons of two- and three-dimensional solutions

We compare (36) with (50) and (65) for TE waves, and (45) with (58) for TM waves. Dispersion relations
in terms of the following dimensionless variables are calculated and plotted:
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X ¼ n
p
2h

	 
.
; X ¼ x c0

p
2h

	 
.
; c0 ¼

1ffiffiffiffiffiffiffiffiffi
e0l0

p . ð67Þ
We are interested in long waves with a small wave number X, which are used more often in appli-
cations.

Fig. 5 shows the comparison of the first few branches of the dispersion curves for TE waves. The figure
shows that the dispersion curves of the uncoupled two-dimensional equations agree qualitatively with those
from the three-dimensional equations, but the two-dimensional equations and solutions are much simpler.
Similar results can be seen in Fig. 6 for TM waves.

If couplings among different orders of the two-dimensional equations are considered, the dispersion
curves of the two-dimensional equations approximate those of the three-dimensional equations better
(See Fig. 7 for TE waves and its comparison with Fig. 5). The cutoff frequencies (frequencies for vanishing
wave numbers) are still off. These cutoff frequencies usually can be adjusted by introducing correction fac-
tor(s) (Mindlin, 1955; Lee and Yang, 1993a; Lee and Yu, 1994), which needs to be done in specific cases and
is not pursued here.
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6. Conclusion

Two-dimensional equations for electromagnetic waves in layered dielectric plates are derived. The der-
ivation differs from those in the literature by using a variational principle which results in a major simpli-
fication of the equations. The equations obtained can describe long waves in a multi-layered dielectric plate.
They are simpler than the three-dimensional equations and can be used to study finite dielectric resonators,
and surface waves guided by dielectric films.
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Appendix A. Derivation of two-dimensional constitutive relations

For a,b = 1,3:
H ðnÞ
a ¼

Z 1

�1

Ha sin
ðnþ 1Þp

2
ð1� wÞdw ¼

XN
I¼1

Z wI

wI�1

ðmIabBb þ mIa2B2Þ sin
ðnþ 1Þp

2
ð1� wÞdw

¼
XN
I¼1

Z wI

wI�1

mIab
X
m

BðmÞ
b sin

ðmþ 1Þp
2

ð1� wÞ þ mIa2
X
m

BðmÞ
2 cos

mp
2

ð1� wÞ
" #

� sin
ðnþ 1Þp

2
ð1� wÞdw ¼

X
m

BðmÞ
b

XN
I¼1

Z wI

wI�1

mIab sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw

þ
X
m

BðmÞ
2

XN
I¼1

Z wI

wI�1

mIa2 cos
mp
2

ð1� wÞ sin ðnþ 1Þp
2

ð1� wÞdw

¼
X
m

BðmÞ
b N ðm;nÞ

ab þ
X
m

BðmÞ
2 N ðm;nÞ

a2 ¼
X
m

N ðm;nÞ
aj BðmÞ

j ; ðA:1Þ
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where wI = hI/h, and
N ðm;nÞ
ab ¼

XN
I¼1

Z wI

wI�1

mIab sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw ¼ N ðm;nÞ

ba ¼ N ðn;mÞ
ab ;

N ðm;nÞ
a2 ¼

XN
I¼1

Z wI

wI�1

mIa2 cos
mp
2

ð1� wÞ sin ðnþ 1Þp
2

ð1� wÞdw.
ðA:2Þ
Similarly,
H ðnÞ
2 ¼

Z 1

�1

H 2 cos
np
2
ð1� wÞdw ¼

XN
I¼1

Z wI

wI�1

ðmI2bBb þ mI22B2Þ cos
np
2
ð1� wÞdw

¼
XN
I¼1

Z wI

wI�1

mI2b
X
m

BðmÞ
b sin

ðmþ 1Þp
2

ð1� wÞ þ mI22
X
m

BðmÞ
2 cos

mp
2

ð1� wÞ
" #

cos
np
2
ð1� wÞdw

¼
X
m

BðmÞ
b

XN
I¼1

Z wI

wI�1

mI2b sin
ðmþ 1Þp

2
ð1� wÞ cos np

2
ð1� wÞdw

þ
X
m

BðmÞ
2

XN
I¼1

Z wI

wI�1

mI22 cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw

¼
X
m

BðmÞ
b N ðm;nÞ

2b þ
X
m

BðmÞ
2 N ðm;nÞ

22 ¼
X
m

N ðm;nÞ
2j BðmÞ

j ; ðA:3Þ
where
N ðm;nÞ
2b ¼

XN
I¼1

Z wI

wI�1

mI2b sin
ðmþ 1Þp

2
ð1� wÞ cos np

2
ð1� wÞdw ¼ N ðn;mÞ

b2 ;

N ðm;nÞ
22 ¼

XN
I¼1

Z wI

wI�1

mI22 cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw ¼ N ðn;mÞ

22 .

ðA:4Þ
For the electric constitutive relations, we have
DðnÞ
a ¼

Z 1

�1

Da cos
np
2
ð1� wÞdw ¼

XN
I¼1

Z wI

wI�1

ðeIabEb þ eIa2E2Þ cos
np
2
ð1� wÞdw

¼
XN
I¼1

Z wI

wI�1

eIab
X
m

EðmÞ
b cos

mp
2

ð1� wÞ þ eIa2
X
m

EðmÞ
2 sin

ðmþ 1Þp
2

ð1� wÞ
" #

cos
np
2
ð1� wÞdw

¼
X
m

EðmÞ
b

XN
I¼1

Z wI

wI�1

eIab cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw

þ
X
m

EðmÞ
2

XN
I¼1

Z wI

wI�1

eIa2 sin
ðmþ 1Þp

2
ð1� wÞ cos np

2
ð1� wÞdw

¼
X
m

EðmÞ
b M ðm;nÞ

ab þ
X
m

EðmÞ
2 M ðm;nÞ

a2 ¼
X
m

M ðm;nÞ
aj EðmÞ

j ; ðA:5Þ

M ðm;nÞ
ab ¼

XN
I¼1

Z wI

wI�1

eIab cos
mp
2

ð1� wÞ cos np
2
ð1� wÞdw ¼ M ðm;nÞ

ba ¼ M ðn;mÞ
ab ;

M ðm;nÞ
a2 ¼

XN
I¼1

Z wI

wI�1

eIa2 sin
ðmþ 1Þp

2
ð1� wÞ cos np

2
ð1� wÞdw;

ðA:6Þ
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DðnÞ
2 ¼

Z 1

�1

D2 sin
ðnþ 1Þp

2
ð1� wÞdw ¼

XN
I¼1

Z wI

wI�1

ðeI2bEb þ eI22E2Þ sin
ðnþ 1Þp

2
ð1� wÞdw

¼
XN
I¼1

Z wI

wI�1

eI2b
X
m

EðmÞ
b cos

mp
2

ð1� wÞ þ eI22
X
m

EðmÞ
2 sin

ðmþ 1Þp
2

ð1� wÞ
" #

sin
ðnþ 1Þp

2
ð1� wÞdw

¼
X
m

EðmÞ
b

XN
I¼1

Z wI

wI�1

eI2b cos
ðmpÞ
2

ð1� wÞ sin ðnþ 1Þp
2

ð1� wÞdw

þ
X
m

EðmÞ
2

XN
I¼1

Z wI

wI�1

eI22 sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw

¼
X
m

EðmÞ
b M ðm;nÞ

2b þ
X
m

EðmÞ
2 M ðm;nÞ

22 ¼
X
m

M ðm;nÞ
2j EðmÞ

j ; ðA:7Þ
where
M ðm;nÞ
2b ¼

XN
I¼1

Z wI

wI�1

eI2b cos
mp
2

ð1� wÞ sin ðnþ 1Þp
2

ð1� wÞdw ¼ M ðn;mÞ
b2 ;

M ðm;nÞ
22 ¼

XN
I¼1

Z wI

wI�1

eI22 sin
ðmþ 1Þp

2
ð1� wÞ sin ðnþ 1Þp

2
ð1� wÞdw ¼ M ðn;mÞ

22 .

ðA:8Þ
Appendix B. Derivation of two-dimensional boundary conditions

Z t1
Z

t0

dt
SH

eijknjðHk � HkÞdAi dS

¼
Z t1

t0

dt
Z
CH

dl
Z h

�h
dx2½ðn2H 3 � n2H 3 � n3H 2 þ n3H 2ÞdA1

þ ðn3H 1 � n3H 1 � n1H 3 þ n1H 3ÞdA2

þ ðn1H 2 � n1H 2 � n2H 1 þ n2H 1ÞdA3�

¼
Z t1

t0

dt
Z
CH

dl
Z h

�h
dx2½ð�n3H 2 þ n3H 2ÞdA1

þ ðn3H 1 � n3H 1 � n1H 3 þ n1H 3ÞdA2 þ ðn1H 2 � n1H 2ÞdA3�

¼
Z t1

t0

dt
Z
CH

dl
Z h

�h
dx2½ð�s1H 2 þ s1H 2ÞdA1

þ ðs1H 1 � s1H 1 þ s3H 3 � s3H 3ÞdA2 þ ð�s3H 2 þ s3H 2ÞdA3�

¼
Z t1

t0

dt
Z
CH

dl
Z h

�h
dx2½ð�H 2 þ H 2ÞdðA � sÞ þ ðH � s�H � sÞdA2�. ðB:1Þ
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